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Iterative Numerical Computation of the
Electromagnetic Fields Inside Weakly
Nonlinear Infinite Dielectric Cylinders
of Arbitrary Cross Sections Using the
Distorted-Wave Born Approximation

Salvatore Caorsi, Andrea Massa, and Matteo Pastorino. Member, IEEE

Abstract—The electromagnetic scattering by weakly nonlinear
infinite dielectric cylinders is the topic dealt with in this pa-
per. The cylinders are assumed to be isotropic, inhomogeneous,
and lossless and to have arbitrarily shaped cross sections. A
time-periodic illumination of the transverse magnetic type is
considered. The nonlinearity is assumed to be expressed by
the dependence of the dielectric permittivity on the internal
electric field, under the hypothesis that the operator responsi-
ble for the nonlinearity does not modify the scalar nature of
the dielectric permittivity and produces a time-periodic output.
The electromagnetic scattering is then described by an integral
equation formulation, and the electromagnetic field distribu-
tions inside and outside a scatterer are approximated by an
iterative numerical procedure starting with the application of
the distorted-wave Born approximation. In a simplified version
of the approach, the classic first-order Born approximation is
used. The convergence of the approach is discussed in several
examples. In the computer simulations concerning cylinders with
different cross-section shapes, the effects of the nonlinearity on
the field-component fundamental frequency were evaluated for
different values of the nonlinear parameters in the case of a
Kerr-like nonlinearity and of a uniform incident plane wave. The
generation of higher-order harmonics was also considered.

I. INTRODUCTION

LECTROMAGNETIC wave propagation and scattering

in the presence of nonlinear materials has been a topic
widely investigated in recent years. We refer the reader to
several books (e.g.. [1]-[5]) and to some more recent papers
cited in this text and to the lists of references provided in
these papers. Among the various topics related to nonlin-
ear electromagnetics, this paper deals with the scattering of
electromagnetic waves by weakly nonlinear dielectric objects.
The problem is addressed here from a numerical point view,
assuming the nonlinear scatterers to be infinite dielectric
cylinders of arbitrary cross-section shapes and illuminated by
time-periodic incident waves of the transverse-magnetic type
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(according to the Shelkunoff terminology [6]). The cylinder
cross sections are assumed to be isotropic, nonmagnetic,
lossless, and inhomogeneous, the inhomogeneity due not only
to the nonlinearity but also to the inhomogeneous nature of the
linear part of the dielectric permittivity [7]. In the past, similar
topics have been addressed in several papers. For example, the
scattering of an obliquely incident plane wave from a weakly
nonlinear anisotropic infinite cylinder was studied in [8] using
the perturbation method also adopted in [9] for the nonlinear
propagation in a nonlinear-filled waveguide. In [10]. the author
developed a general approach to solving nonlinear scatter-
ing problems, assuming phase-matching conditions. He used
Volterra-type integrals [11] also used in many other important
papers dealing with nonlinear electromagnetic problems [12],
[13]. The scattering by nonlinear dielectric layers and by finite
nonlinear films has also been considered. For example. in
[14] and [15], the scattering of a transverse-electric wave was
discussed. In [16], the authors of the present paper proposed a
numerical approach to the computation of the electromagnetic
scattering by weakly nonlinear bounded objects in free space;
the method was based on an integral equation formalism.
This approach was further developed in [17]. and in [18]
the numerical solution was reduced to a global minimization
problem.

If one wants to use Maxwell equations, one of the key points
is the description of the nonlinear relations between induction
and field vectors. In many practical applications, the polariza-
tion has very often been expressed in terms of power series of
the field [2]. In several cases, nonlinear materials have been
assumed to be characterized by a Kerr-like nonlinearity [19] in
which the dielectric permittivity was a function dependent on
the instantancous value of the local electric field intensity [7],
[14], [15]. Higher-order nonlinearities have been considered
in some works. In [16] and [17], a weak nonlinearity was
assumed to be expressed by the dielectric permittivity as a
function of the internal field under the hypotheses that the
medium was isotropic and that the operator was responsible
for the nonlinearity being such as to provide a time-periodic
output. Such nonlinearity includes. as particular cases, the
Kerr-like nonlinearity and higher-order ones [20].
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In the present paper, on the basis of the integral equation .

formulation we proposed in [17], we develop an iterative
approach for the approximate computation of the fields inside
and outside the infinite cylinders considered. The approach is
started by using the so-called distorted-wave Born approxi-
mation [21], according to which the scattered electric field is
expressed in terms of the internal field that would be present
in a linear scatterer characterized by the dielectric permittivity
of the asymptotic part of the actual nonlinear scatterer. A
simplified version is also presented in which the starting point
is the use of the classic first-order Born approximation [22]
for which the scattered field is approximated by the known
incident field. Iterative approaches based on the first-order
Born approximation have been found to provide accurate
field predictions in linear cases and for very weak scatterers
[23]. First-order approximations have also been used for one-
dimensional (1-D) nonlinear scattering problems [24]. As to
the proposed approach using the distorted-wave Born approx-
imation, the numerical solution is first obtained by using the
Richmond formulation [25], which has proved to be effective
in dealing with two-dimensional (2-D) scattering by linear
dielectrics but only under transverse-magnetic illumination
conditions. In [26], we used a similar approach to computing
the bistatic scattering width for weakly nonlinear dielectric
objects with circular cross sections, but under the additional
strong assumption that higher-order harmonics generation was
negligible.

Since the approach is an iterative one, the convergence
issue is of fundamental importance. Since in a nonlinear
case convergence depends on a larger number of factors in
comparison with a linear case (as will be discussed in the
following), however, we are currently unable to discuss this
issue on a theoretical basis. It was considered only via several
numerical simulations. In particular in such simulations, we
explored the possibility of predicting the effects of a nonlin-
earity on the field component at the fundamental frequency, for
infinite cylinders with different scattering cross sections and
for various geometrical and physical configurations. Moreover,
the possibility of taking into account third-order harmonics
generation was also evaluated. Finally, the application of an
upper bound for the numerical discretization, in the light of
the nonlinear problem to be handled, is briefly discussed.

II. MATHEMATICAL FORMULATION

Let us consider an infinite dielectric cylinder of arbitrary
cross section, S, with the cylindrical axis parallel to the z
axis in a Cartesian system of coordinates. The cylinder is il-
luminated by a time-periodic transverse-magnetic electromag-
netic field, E™ (2, y, 2z, t) = EP(x,y, t)z, H" (z,y,2,1) =
Hirne(z,y,t)x + H;/“C(w,y, t)y. The propagation medium is
assumed to be lossless, homogeneous, and characterized by
1o and eg. The cross section of the cylinder is isotropic and
nonmagnetic {(p(r) = po). Inside the object cross section, the
following Maxwell equations hold

6B(x.y, z,1)

V x E(x,y, 2, t) + 50

=0 (1)

6D(z,y,2.1)
ot

As mentioned in the Section I, general relationships for the
constitutive equations D(E) and B(H) can be written in
terms of Volterra series [11]. In many practical cases, however,
a nonlinear dielectric permittivity is heuristically assumed,
which is expressed in terms of a power series of the field
[2]. In this paper, following the formulation we previously
proposed in [17], we assume the dielectric permittivity to be
dependent on the internal electric field through the relation

c‘nl(-’lf7;l/7t) = EO[El(mv y) + EQ{E($7y7t)}] (3)

where 1(r,y) is the linear part and e{E(z,y,t)} is -an
operator (responsible for the (weak) nonlinearity), which does
not modify the scalar nature of the dielectric permittivity
and produces a time-periodic output, under the aforesaid
hypothesis on the illuminating field. To simplify the notation,
the subscript z denoting the z Cartesian components of the
electric field vector is omitted in this relation, as well as in the
following ones. The scatterer cross section is inhomogeneous
both due to the nonlinearity and in the limit E(x,y,t) — 0 [7].
The above expression for e, (z,y,t) includes, as partlcular
cases, many nonlinearities used in practical applications, in
particular the Kerr-like nonlinearity, which will be considered
in the section on numerical examples.

Under the assumptions previously made in [17], it was
shown that after expanding E™(z,y,t), F(z,y,t), and
eo{F(x,y,t)} in Fourier series at the fundamental frequency
fo = wo/27, in the case of weak nonlinearities, the following
inhomogeneous wave equation holds for each harmonic
component,

(V2 4+ k2,25 (z,y) = —kZ (e1(z,y) — 1)
x B (2, y) — k2, A (2, ) (4)

V x H{z,y,2.t) — = 0. 2

2 = m2uwleopo, and &2 (z,y) is the mth
harmonic component of the scattered electric field and is
given bydi™(z,y) = & (z,y) — 8" (z,y), where
™ (2, y) and ®4™ (1, y) are the mth harmonic components
of E(x,y,t) and E™(z,y,t). The term AU™(z,y) is a
coupling term dependent on the field components at the same
frequency and at other frequencies; it is given by

S 3 e,

p=—00 g=—00

where k2

A (g, y) = (2, 1) D (z,y) (5)

where 77 = 1L, if ¢ +j = m, and 7] = 0, otherwise.
Qi(z,y) is the 4th harmonic component of eo{F(z,y,t)}.
The coupling term A(™)(z,y) can be rendered explicit once
the nonlinear operator has been specified. In the section on
numerical results, the expression for A(™)(z,y) in the case
of the Kerr-like nonlinearity will be provided. The wave (4)
is the scalar analogous to the vector equation (18) in [17],
where the three-dimensional (3-D) problem was reduced to a
nonlinear system of algebraic equations to be solved in order
to obtain a numerical solution.

In this paper, we aim to reach an iterative approximate
solution to (4). Such a solution can be achieved by applying
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the so-called distorted-wave Born approximation, which is
widely used, especially to solve inverse problems [21]. In
particular, we focus on the effects of the nonlinearity on the
field components at the fundamental frequency fo. If we apply
the distorted-wave Born approximation, we can express the
scattered electric field (for m = 1) in terms of the linear
internal field, ®%(x,y), i.e., the field that would be present
in a cylinder with a homogeneous permittivity equal to the
linear part of the actual permittivity. We obtain

o' V(z,y) = @ M(x,y)
~ §02/4) [ sl = 05
x HE (k1p)da'dy' — f(kf/‘l)
x /S A= (e VHD (ki p)da'dy’ (6)

where H, ((,2) (ky1p) is the Hankel function of the second kind and
the zeroth order and p is given by p = [(z—2')*+(y—y')*]*/?
[27]. In (6), the superscript in the term A~ (z, y) indicates
that the coupling term is computed by (5) in terms of the
linear field ®F(z,y).

A simpler approximate solution to (5) can be obtained by
using the classic first-order Born approximation [22]. In this
case, the scattered electric field is expressed in terms of the
internal incident electric field. This approximation yields

' (z,y) = D (z,y) —j(k%/4)/(61<w) -1
S
x ' (2! o YH (k1 p)da’dy' — (k3 /4)

X / AP~ (o VP (kyp)da'dy’ (D)
s

Scattering by a nonlinear circular cylinder. Amplitudes of &1 (2, y) and @ (2, y). (B0 =
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where AP~(D(z,y) indicates that the coupling term is com-
puted by using (5), on the basis of the incident field only.

In order to develop an iterative process for the computation
of the electric field distributions inside and outside S, we
assume that the nonlinear field at step (k -+ 1) is given by

80 (w,0) = ¥V (a,y) = iK/4) [ ale' /) = 1
x 0 (o' o VD (kup)da’dy — (K3 /4)
x / AN NHP (kyp)dd'dy' ()
s
where AEL(l)(x,y) is computed by (6) uvsing Q)fc(l)(ac,y).
Moreover, from (8), it follows that <IJ§(1>(.7:, y) = &M (z,y),
if the first-order Born approximation is used, whereas
S z,y) = ®L(x,y), if the distorted-wave Born approx-
1 Y
imation is applied.

In order to evaluate the convergence of the proposed itera-
tive approach, the following residual error is defined

R{k+1} =571 /
S
- {‘I’Zﬂ(x’, y) - @D, y) + j(kF/4)
S
= S“l/ X /[el(u,v) - 1]@2&1(“,7)),}[6%
. JS
S
- 5—1/ % (fr€)dudv + j (k2 /4) / At (u,v)
JS
S
=5 [ ]{é2>(k1§)dudv} da'dy’ ©)

where ¢ = [(@/ — u)? + (v — v)?]'/2. The approach is
assumed to be convergent if R{k} — 0, as k& — oo. It is
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Fig. 2. Scattering by a circular cylinder coated with a nonlinear layer (®9 = 1 (V/m), do = 0. 2, = 1.8, e1 = 1.1, kras = 0.497; kra; = 0.6,
P = 121). Comparison between the iterative approaches using the distorted-wave Born approximation (DWBA) and the Born approximation (BA). (a)

and (b) e2 = 0.01: (¢) and (d) €2 = 0.1;

well known that, in a linear case, iterative approaches using
the Born approximation and the moment method converge if
max,{A;} <1, where ), is the jth eigenvalue of the resulting
impedance matrix. The above condition can be satisfied for
very weakly scattering objects, for which convergence can be
explicitly related to the known dielectric parameters of the
scatterers. Analogously, in the case of nonlinear scatterers, we
can expect the process to be convergent for very weak scat-
terers only, hence for very weak nonlinearities. Unfortunately,
in the present case, convergence depends on various factors:
the linear part of the dielectric permittivity, the nonlinear
coefficient, and the incident electric field. Unlike linear scat-
tering, for a monochromatic plane wave TM illumination, the
amplitude, phase, and frequency values contribute to process
convergence or divergence. This makes it impossible to define
a criterion that establishes whether convergence can or cannot
be reached, given the values of such parameters. Nevertheless,
in the Section III, this aspect will be discussed on the basis
of several numerical results.

Furthermore, in order to apply the distorted-wave Born
approximation, at the first iteration step the field Qi(l)(m, y) =
®L(z,y) is numerically computed by the Richmond for-
mulation [25], which has been proven to be accurate for
forward-scattering by dielectric cylinders if a TM illumination
is used [28]. To apply the Richmond method, the cross section
S is partitioned into P square subdomains, p = 1,...,P.
The field and dielectric parameters are assumed to be constant
inside each cell, and the problem solution can be obtained by
the matrix equation

[R]2" = &' (10)

where
@ unknown array of dimensions P x 1 whose elements

are given by ¢L = ®L(z,,y,), p = 1,..., P, where

(2p, yp) s the center of the pth subdomain,

®" excitation array of dimensions P x 1 whose elements

are given by ¢}, = @'D(zy,5,), p = 1,---, P,
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[R] impedance matrix of dimensions P x P whose generic
12 elements are
K; = -kx
(linear)
i kp=-kx\ .
5 (mm@ e rog = (J/2)er(rp.yp) — 1
3 (2) a0 .
i X [whiapHy  (kippy) —2j] ifp=gq
EN k; =kyy = -k — (4
. 1 (h;);ar) ¥ Tpqg = (J/2)[EL(‘pr yp) _< 1]
_— _ - 2 .
2 o e X whiap i (DA (hpy) i % a
=3 ; where ppy = [(xp—24)2 + (Yp — y4)?]/? and a,, = (S, /7)1/2,
; k(llx:e:]::)x S, being the area of the pth subdomain.
K, = k,x It is important to note that for linear problems, the
(nontmear) discretization should be chosen according to the Hag-
mann—-Gandhi—-Durney criterion [29], which relates the
" Y 9 P 6 maximum linear dimensions of each subdomain to the

minimum wavelength of the incident field. In a nonlinear
case, the minimum significant wavelength of the field is not
F}g. 3. Scatterlpg by a nor;hnear half-shell for different illumination known, due to harmonics generation. Therefore, one has to
directions. Amplitude of ®*1)(.r. y). ki propagation vector (&g = 1 K Lo . d fix th .

(Vim), o = 0, £y = 1.5, ep = 0.2. hyay = 0.497. kra; = 0.6, rpa e sqme aprzorz assumptlon§ 1n.or er to fix t §max1mum
P = 21. ag = 1.057, DWBA). linear dimensions of the discretization cells. In this case, the
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TABLE 1
RESIDUAL ERRORS R{k} FOR DIFFERENT NUMBERS OF ITERATIONS. SIMULATIONS IN FIG. 2
k| g, = 0.01 g, =0.1 g, = 0.2 g =0.8
DWBA BA DWBA BA DWBA BA DWBA BA
1 5.61:103 | 4.80-10! | 4.88:103 | 5.07-10! | 7.09-103 | 5.37-10! | 8.73-102 | 7.54:101
2 2.93-103 | 3.04-10! | 3.93-10-3 | 3.65-10! | 5.79-103 | 4.54-10-1 | 1.26-10-! | 1.92-10°
3 1.81-103 | 2.09-10-1 | 2.86-10-3 | 2.65-10! | 4.49-103 | 3.67-10-! | 1.07-10-! | 7.07-10°
4 1.25-10- | 1.50-10! | 2.18-103 | 2.12:10"1 | 3.,67-103 | 3.39-10-! | 8.89-10-2 | 4.66-10!
5 8.85-10+ | 1.08-10t | 1.76:10-3 | 1.67-10"! | 3.37-103 | 2.99-10! | 1.97-10-1 | 1.90-104
6 6.42-10 | 7.76-102 | 1.32-103 | 1.26-10-! | 2.70-103 | 2.38-10! | 2.29-10-* | 1.79-102
12 9.19-10-% | 1.11-102 | 3.07-10-4 | 2.98-10-2 | 1.13-103 | 1.03-10! | 3.44-10 -
(k* =12)
13 <R{k*} | 8.01-103 | 2.45:10 | 2.31:10°2 | 1.05-103 | 9.49-102 | 8.08-10°0 -
14 < R{k*} | 5.81-103 | 1.85-10-4 | 1.78-10-2 | 8.54-10% | 7.61-102 | 4.89-10! -
15 < R{k*} | 420-103 | 1.50-104 | 1.45-10-2 | 7.42-104 | 6.82-102 | 4.87-103 -
16 <R{k*} | 3.04-103 | 1.15-104 | 1.09-102 | 6.75:10% | 6.04:102 | 7.57-10°
17 <R{k*} | 2.20-103 | 8.92:10"5 | 1.09:102 | 5.42-10¢ | 4.87-102 - -
(k*= 17)
27 <PR{{k*} | 859105 | < S‘t{k*} 271104 | 1.35104 | 1.22 102 - -
(k* =27)
29 | <R{k*} | <R{k*} | <R{E*) 1 992105 : : - -
(k*=29)
36 <R{k*} | <R{k*} | <R{k*} | < R{k*} | 813105 | 3.31 103 - -
(k*=36)
62 <Rk} | <R{E*} | <Rk} | <R{E*T | <R{k*} | 8.38 105 - -
(k*= 62)
Hagmann—Gandhi-Durney criterion for 2-D problems can be _ il o il o)
expressed as =5 E +J(k1/4 E £1(zq,9q) — 1]0 k+1(1quq)
p=1 q=1
kal <2 an P N
= L(1
=57 Z x HO (klgpq)Asq +.7 ]‘”2/4 ZAH—g )
where | = a+/7 and kj; has been defined in (4), where M is p=1 g=1

the estimated maximum order of the harmonic components.
Once the approximate linear field fbi(l)(w, y) = ®5(z,y)

has been computed, the iterative process can be implemented

by discretizing relation (8) according to the previous scheme

P

O (2,y) ~ 8O (a.y) — 5 (k2/4) S lea(@p,yp) - 1]
p=1

X (I)Z(l)<mpvyp)H(§ )(klpp)Asp “j(k1/4)

P
x S AT (1) HE (Brpp) s, (12)

p=1

where p, = [(z — x,)% + (y — y,)?]'/%. Analogously, the
residual error is computed approximately as follows

ORI

p=1\p=1

Rk +1} ~ (I)z(l)(xpwyp)

P
=8 IZ X (@q.Yq Ho (klf,,q)Asq}Asp. (13)

=1

Even though in this paper we place emphasis on the effects
of the nonlinearity on the fundamental field components,
in the following we explore the possibility of predicting
the generation of higher-order harmonics. This problem can
be faced by using (4) and (5), applied recursively. Let us
consider in detail the generation of the third-order harmonic
component, under the hypothesis of a monochromatic incident
field at a frequency fo. If we apply the distorted-wave Born
approximation, we can express a solution to (4) for m = 3
as follows

o (z,y) = —j(ki/4) / AE=O) !y Y HEP (ka p)da’ dyf
o (14)

where AX~3)(z,) indicates that the coupling term is com-
puted by (5) in terms of the linear field ®%(x,y) (at the
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Fiay, = 06w, P = 21, ag = L.057, DWBA).

fundamental frequency). If we use the first-order Born ap-
proximation, we can replace (14) with

) (2, y) = —y (k3 /4) / AB=BI VY HE (ksp)da' dy' .
° (15)
At this point, the iterative approach can be expressed by

o (i, y) = —j(A3/4) /S[gl(lay') — 118!y

X HE (k) dy’ — j(k2/4) /SATL@(%* y)

x H§ (kzp)dc'dy (16)

which can be numerically implemented by following the
same scheme as previously used for the fundamental field
component

P

&%) () & —j (k3/4) > lealry, ) — 10 ()
p=

x HE (k1pp)As, — j(k2/4)

—_

P
xS AT O oy HE (Rapp)Asy. (1)

p=1
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The same procedure can be applied to derive analogous
expressions for all higher-frequency components.

III. NUMERICAL RESULTS

As a first example, we considered the scattering by an
infinite cylinder of circular cross section (Fig. 1). The cylinder
was illuminated by a TM plane wave given by

@L(l)(l’,y) — (I)Oe—Jkl'u+¢o (18)
where u = ux + yy. |ki| = k1, and ®g and ¢ are real
constants. As mentioned in Section 1, the convergence rate
depends (unlike the linear case) on ®y and ¢y, which are
included in the scattering process through (3). The nonlinearity
was assumed to be of the Kerr type, for which (3) can be
rewritten as

ent(T y,t) = &0 [sl(x,y) + 52|E(;L*,y,t)|2]. (19)
As a consequence of this choice, the coefficients §2,(x,y) in

(5) can now be rendered explicit. More precisely, they are

given by
Qi (x,y) = 52T"1/ E(r,y.t)%e 9"0tgy (20)
T

where T' = 2 Jwo.
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In this first example, we assumed g = 1 (V/m), ¢y = 0,
and k1 = ki1x. Moreover, the cross section of the cylinder
was assumed to be homogeneous iu its linear part (e1(z,y) =

= 1.3) and with a radius a such that kia = 1.57. The
other assumed parameters were 5 = 0.1 (corresponding to
rather a significant nonlinearity) and P = 225. Fig. 1 shows
pictorial representations of the amplitudes of the total and scat-
tered electric fields (at the fundamental frequency) ®*(")(z, y)

and &V (z,y) (= W (z,y) — & (z,y)), respectively,
obtained by using the distorted-wave Born approximation. The
figure gives the values for k = 1 and the assumed convergence
values, i.e., the values obtained at a given step k* at which
the residual error R{£*} turned out to be less than a fixed
threshold value, R;y,. In this case, we assumed Ry, = 1074,
The total and scattered electric fields distributions in the linear
case (e = 0.) are also provided.
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Fig 8. Scattering by a nonlmear shell. Effects of the amplitude of the
mcident plane wave ®g(@o = 0, 51 = 1.2, kyay = 0497 kya; = 00m,
P = 121, DWBA)

A comparison between the approach based on the distorted-
wave Born approximation and the version of the approach
based on the classic Born approximation was made, con-
sidering a homogeneous (linear) dielectric circular cylinder

TABLE I
RESIDUAL ERRORS R{A} FOR DIFFERENT
NUMBERS OF ITERATIONS. SIMULATIONS IN FIG. 4

* g, = 0.05 g, =0.1 g, =03
ky
1 2.99-10+4 4.89-103 1.33-10!
2 2.95-10- 1.21-10° 6.27-101
3 3.37-104 9.60-103 4.85-100
4 1.17-10+ 8.00-103 1.90-102
5 4.91-10% 6.63-103 1.79-106
(k*=5)
28 < R{k*} 9.27-10° -
(k*=28)

coated with a nonlinear layer (Fig. 2(a)). The incident electric
field was given by (18) (g = 1 (V/m), ¢9 = 0, and
ky = kyx) and the other parameters of the two-layer cylinder
were ¢, (nucleus) = 1.8, ¢; (nonlinear layer) = 1.1, kja; =
0.6w, and kjas = 0497, P = 121. Fig. 2 gives the
values of the amplitude of the total electric field, ®*1) (.1, y),
calculated along the . axis (y = 0.0) by using the two
algorithms for different values of the nonlinear parameter
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of @ (1 (z,y) and ®*()(z,y). (b) Bistatic scattering width (W (4)).

¢5. The values obtained in the linear case (¢; = 0.0) and
analytically computed [30] are also given. In all cases, the
process converged quite slowly (even in the linear case),
due to the relatively high permittivity of the linear internal
cylinder. However, the distorted-wave Born approximation
always converged more quickly. For e = 0.8, the process was

®

21

0, ki = kix, kis = 1.6m; P = 106, DWBA). (a) Amplitudes

divergent, even though the solution at the first iteration may
be of some interest. The above considerations are confirmed
by the values of the residual error R{k}, which are given in
Table I. For this example, we assumed Ry, = 1074

In other simulations, a half-shell was considered (Fig. 3).
The incident field was assumed to be given by (18), but in
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Fig. 10. Scattering by a nonlinear cylinder. Amplitude of ®*(3)(z,y)
(generated third-order harmonic component). The configuration is the same
as in Fig. 1.

30

25.

y =00

| DY)

Fig. 11. Scattering by a nonlinear shell, Amplitude of (3 (z, y) (generated
third-order harmonic component). The configuration is the same as in Fig. 8.

this case the propagation direction was made to change. In
particular, Fig. 3 gives the values of the amplitude of the
total electric field ®(Y(x,y), calculated by the distorted-
wave Born approximation along the z axis (y = 0.) for
different values of k. In particular, we assumed k; = kix,
ki = —kix, k; = k1y, and k; = —kyy. The other assumed
parameters were &g = 1 (V/m), ¢g = 0, ;3 = 1.5, g2 = 0.2,
k1a2 = 0‘4971', k1a1 = 0.671', P = 21, and Qg = 1.057.
The figure also gives the values obtained in the linear case
(e2 = 0.0). In order to show the effects of the nonlinear
index, Fig. 4 gives a pictorial representation of the amplitude
of the scattered electric field (at the fundamental frequency)
&5 (z,y) = ®*W(z,y) — D (z,y), computed by using
the distorted-wave Born approximation in the [z, y| plane; the
scattered field was due to the interaction of the incident field
with the same half-shell as in Fig. 3, for k; = kix and

g1 = 1.8. For e5 = 0.05 and ¢ = 0.1, the figure gives

(@) )|
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_— 1.0
1y s N |
R
N
A
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,; Illl[lll"/ "I" 3
L

% é:,"’?‘;:\ﬁ,b“\\

Fig. 12. Scattering by a cylinder of irregular cross section. Amplitude of
®3)(, y) (generated third-order harmonic component). The configuration
is the same as in Fig. 9.

TABLE III
RESIDUAL ERRORS R{k} FOR DIFFERENT NUMBERS
OF ITERATIONS. SIMULATIONS IN Figs. 5-7

k) k! = 1.6n k! =32n k! = 6.4
1 6.06:10-1 8.87-10-1 1.50-10-1
2 6.75:102 1.99-10-1 225101
3 2.21-102 1.95-10-1 5.49-10
4 6.6810° 1.14-101 3.34-10°
5 1.45-103 7.15:102 8.79-102
6 3.45-10-4 3.21-102 2.41-105
7 7.35:10°5 1.95-102 2.69-101
(k*=17)
18 < R{k*} 8.65:10° -
(k*= 18)

the convergence values, whereas for €3 = 0.3, the values are
those obtained at k& = 1. The linear values are also given for
a comparison, and the values of the residual error R{k} are
given in Table II for a threshold value fixed at R, = 1072,

A cylinder of square section was also considered in order
to evaluate the effects of the nonlinearity for different values
of the ratio between the wavelength and the linear dimensions
of the cross section. Figs. 5-7 show the 3-D representations
of the amplitude of the total electric field ®*(Y)(z,y) in the
[,y] plane at various iteration steps (distorted-wave Born
approximation). The assumed parameters were &g = 1 (V/m),
d)o = 0, k1 = ]{}1X, E1 = 1.2, €9 = 008, kll = 1.6m (Flg 5),
kil = 3.27 (Fig. 6), k1l = 6.47 (Fig. 7), and P = 144. The
total linear field ®L(z,y) is also plotted. Table III gives the
values of the residual error R{k}, for a threshold value fixed
at Ry = 1074

The effects of the amplitude of the incident plane wave ®q
(which, in linear scattering, plays only the role of a multiplying
constant) were considered with reference to a single nonlinear
shell (Fig. 8). The shell was characterized by the following
geometrical and electrical parameters: ¢o = 0, k1 = kix,
g1 = ]..27 €9 = 0.2, k‘lag = 0.4971’,‘14?1(1,1 = 0.67T, and
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TABLE IV
ResmuaL Errors R{A} For DIFFERENT NUMBERS OF ITERATIONS. SIMULATIONS IN FIG. 9
k=1 k=2 k=3 k=4 k=35 k=6
2.21-102 531103 1.39-10-3 3.58-10 1.22-104 3.88:10%
(k*=6)

P = 40. The figure gives the assumed convergence values
(obtained at step k*, such that R{k*} < Ry, = 104y of the
amplitude of the total electric field ®*V(x,y) along the
axis (y = 0); they were computed by the distorted-wave Born
approximation and normalized to ®4. The values of the linear
field ®%(z, y) (analytically computed and independent of ®)
are also provided.

Finally, the scattering by a nonlinear cylinder of irregular
cross section and inhomogeneous in its linear part was consid-
ered (Fig. 9). We assumed ®¢ = 1 (V/m). ¢ = 0, k1 = k1X,
kis = 1.6, and P = 106, Ry, = 10~%. Fig. 9(a) shows
the pictorial representations of the total and scattered electric
fields at k = k™. Fig. 9(b) gives the bistatic scattering width
[31]. Table IV gives the corresponding values of the residual
error R{k}.

The prediction of the third-harmonic component generation
was considered with reference to the same configuration as
shown in Fig. 1. In particular, Fig. 10 gives a pictorial
representation of the amplitude of ®!®)(z,y) = ®*3)(z,y),
obtained by the iterative scheme defined by (15) and (16)
using the distorted-wave Born approximation for e; = 0.1.
In the case of a single nonlinear circular shell, i.e., the same
as used for the evaluation of the effects of the amplitude of
the incident field on the fundamental components, the iterative
approach (distorted-wave Born approximation) provided the
values of ®*®)(z 9) = ®*B)(z,y) given in Fig. 11. They
were computed along the x axis (y = 0.0), for &y = 1.25 and
for different numbers of iterations.

Finally, for the irregular scatterer used for the simulation
related to Fig. 9, Fig. 12 shows a pictorial representation of
the convergence values of the amplitude of the third-order
harmonic component ®*() (., ) obtained at step A*, at which
R{k*} < 10~ (Table VI).

IV. CONCLUSION

In this paper, an iterative approach to the approximate
computation of the fields inside and outside nonlinear cylinders
of arbitrary shapes has been described. Starting from the
results of an integral-equation formulation for the scattering by
bounded weakly nonlinear dielectrics, the approach makes use
of the distorted-wave Born approximation; in a simpler version
of the approach, the first-order Born approximation is applied.
The paper has described the scattering by several cylinders
(isotropic, lossless, and nonmagnetic) that had various cross-
section shapes and were inhomogeneous in their linear parts.
The effects of the nonlinearity, of the linear part of the
permittivity, of the amplitude of the incident field, and of
the ratio between the wavelength and the linear transversal
dimensions on the fundamental harmonic component have
been evaluated for Kerr-like nonlinearities. In particular, the
convergence of the iterative approach has been discussed.

Finally, the generation of the third-order harmonic component
has been considered in some examples.
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