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Iterative Numerical Computation of the
Electromagnetic Fields Inside Weakly
Nonlinear Infinite Dielectric Cylinders
of Arbitrary Cross Sections Using the
Distorted-Wave Born Approximation

Salvatore Caorsi, Andrea Massa, and Matteo Pastonno. Member, IEEE

Abstract—The electromagnetic scattering by weakly nonlinear
infinite dielectric cylinders is the topic dealt with in this pa-
per. The cylinders are assumed to be isotropic, inhomogeneous,
and lossless and to have arbitrarily shaped cross sections. A
time-periodic illumination of the transverse magnetic type is
considered. The nonlinearity is assumed to be expressed by
the dependence of the dielectric permittivity on the internal
electric field, under the hypothesis that the operator responsi-
ble for the nonlinearity does not modify the scalar nature of
the dielectric permittivity and produces a time-periodic output.
The electromagnetic scattering is then described by an integral
equation formulation, and the electromagnetic field distribu-
tions inside and outside a scatterer are approximated by an
iterative numerical procedure starting with the application of
the distorted-wave Born approximation. In a simplified version
of the approach, the classic first-order Born approximation is
used. The convergence of the approach is discussed in several
examples. In the computer simulations concerning cylinders with
different cross-section shapes, the effects of the nonlinearity on
the field-component fundamental frequency were evaluated for
different values of the nonlinear parameters in the case of a
Kerr-like nonlinearity and of a uniform incident plane wave. The
generation of higher-order harmonics was also considered.

I. INTRODUCTION

E LECTROMAGNETIC wave propagation and scattering
in the presence of nonlinear materials has been a topic

widely investigated in recent years. We refer the reader to
several books (e.g.. [1]–[5]) and to some more recent papers
cited in this text and to the lists of references provided in
these papers. Among the various topics related to nonlin-
ear electromagnetic, this paper deals with the scattering of
electromagnetic waves by weakly nonlinear dielectric objects.
The problem is addressed here from a numerical point view,
assuming the nonlinear scatterers to be infinite dielectric
cylinders of arbitrary cross-section shapes and illuminated by
time-periodic incident waves of the transverse-magnetic type
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(according to the Shelkunoff terminology [6]). The cylinder
cross sections are assumed to be isotropic, nonmagnetic,
lossless, and inhomogeneous, the inhomogeneity due not only
to the nonlinearity but also to the inhomogeneous nature of the

linear part of the dielectric permittivity [7]. In the past. similar

topics have been addressed in several papers. For example, the

scattering of an obliquely incident plane wave from a weakly
nonlinear anisotropic infinite cylinder was studied in [8] using

the perturbation method also adopted in [9] for the nonlinear
propagation in a nonlinear-filled waveguide. In [1O]. the author
developed a general approach to solving nonlinear scatter-
ing problems, assuming phase-matching conditions. He used
Volterra-type integrals [11] also used in many other important
papers dealing with nonlinear electromagnetic problems [12],

[13]. The scattering by nonlinear dielectric layers and by finite
nonlinear films has also been considered. For example, in
[14] and [15], the scattering of a transverse-electric wave was
discussed. In [16], the authors of the present paper proposed a
numerical approach to the computation of the electromagnetic
scattering by weakly nonlinear bounded objects in free space;
the method was based on an integral equation formalism.
This approach was further developed in [17]. and in [18]
the numerical solution was reduced to a global minimization
problem.

If one wants to use Maxwell equations, one of the key points

is the description of the nonlinear relations between induction
and field vectors. In many practical applications, the polariza-
hon has very often been expressed in terms of power series of
the field [2]. In several cases, nonlinear materials have been
assumed to be characterized by a Kern-like nonlinearity [19] in

which the dielectric permittivit y was a function dependent on
the instantaneous value of the local electric field intensity [7],
[14], [15]. Higher-order nonlinearities have been considered
in some works. In [ 16] and [17], a weak nonlinearity was
assumed to be expressed by the dielectric permittivity as a
futiction of the intertml field under the hypotheses that the
medium was isotropic and that the operator was responsible
for the nonlinearity being such as to provide a time-periodic
output. Such nonlinearity includes, as particular cases, the
Kerr-like nonlinearity and higher-order ones [20].
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In the present paper, on the basis of the integral equation

formulation we proposed in [17], we develop an iterative

approach for the approximate computation of the fields inside
and outside the infinite cylinders considered. The approach is

started by using the so-called distorted-wave Born approxi-
mation [21 ], according to which the scattered electric field is
expressed in terms of the internal field that would be present
in a linear scatterer characterized by the dielectric permittivity
of the asymptotic part of the actual nonlinear scatterer. A
simplified version is also presented in which the starting point
is the use of the classic first-order Born approximation [22]
for which the scattered field is approximated by the known

incident field. Iterative approaches based on the first-order
Born approximation have been found to provide accurate
field predictions in linear cases and for very weak scatterers
[23]. First-order approximations have also been used for one-

dimensional (l-D) nonlinear scattering problems [24]. As to
the proposed approach using the distorted-wave Born approx-
imation, the numerical solution is first obtained by using the
Richmond formulation [25], which has proved to be effective
in dealing with two-dimensional (2-D) scattering by linear
dielectrics but only under transverse-magnetic illumination
conditions. In [26], we used a similar approach to computing
the bistatic scattering width for weakly nonlinear dielectric

objects with circular cross sections, but under the additional
strong assumption that higher-order harmonics generation was
negligible.

Since the approach is an iterative one, the convergence
issue is of fundamental importance. Since in a nonlinear
case convergence depends on a larger number of factors in
comparison with a linear case (as will be discussed in the
following), however, we are currently unable to discuss this
issue on a theoretical basis. It was considered only via several
numerical simulations. In particular in such simulations, we
explored the possibility of predicting the effects of a nonlin-
earity on the field component at the fundamental frequency, for
infinite cylinders with different scattering cross sections and
for various geometrical and physical configurations. Moreover,
the possibility of taking into account third-order harmonics
generation was also evaluated. Finally, the application of an
upper bound for the numerical discretization, in the light of
the nonlinear problem to be handled, is briefly discussed.

II. MATHEMATICAL FORMULATION

Let us consider an infinite dielectric cylinder of arbitrary

cross section, S, with the cylindrical axis parallel to the z
axis in a Cartesian system of coordinates. The cylinder is il-
luminated by a time-periodic transverse-magnetic electromag-
netic field, E“’C(X, g, z, t) = -E~(x, y, t)z, Hi’” (x, g, z,t) =

~y(x, Y, ~)x + ~~(x, y, t)y. The propagation medium is
assumed to be lossless, homogeneous, and characterized by
p. and So. The cross section of the cylinder is isotropic and
nonmagnetic (p(r) = P()). Inside the object cross section, the
following Maxwell equations hold

(1)

V x H(x, y,z, t) –
fiD(z, Y,x, t) = ~

(sit

As mentioned in the Section I, general relationships
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(2)

for the

constitutive equations D(E) and B(H) can be written in

terms of Volterra series [11]. In many practical cases, however,
a nonlinear dielectric permittivity is heuristically assumed,
which is expressed in terms of a power series of the field
[2]. In this paper, following the formulation we previously
proposed in [17], we assume the dielectric permittivity to be
dependent on the internal electric field through the relation

%1(:~, y, ~) = ~o[~l(~> Y) + Q.{~(~> Y, ~)}1 (3)

where el(.E, y) is the linear part and CZ{E(X, y, t)} is -an
operator (responsible for the (weak) nonlinearity), which does
not modify the scalar nature of the dielectric permittivity

and produces a time-periodic output, under the aforesaid
hypothesis on the illuminating field. To simplify the notation,
the subscript z denoting the .z Cartesian components of the
electric field vector is omitted in this relation, as well as in the
following ones. The scatterer cross section is inhomogeneous
both due to the nonlinearity and in the limit 13(z, y, t) -+ O [7].
The above expression for ~nl (z, y, t) includes, as particular
cases, many nonlinearities used in practical applications, in
particular the Kerr-like nonlinearity, which will be considered
in the section on numerical examples.

Under the assumptions previously made in [17], it was
shown that after expanding E~ (z, y, t), E(z, y, t), and
C2{E(x, y, t)} in Fourier series at the fundamental frequency
f. = wo/27r, in the case of weak nonlinearities, the following

inhomogeneous wave equation holds for each harmonic
component,

[v:+ k;,]O+n)(z,y)= -k&(E,(z,y)- 1)

x @@J(z, y) – k:A (m) (x, y) (4)

where A&, = mz w~eo~o, and ~~(m)(x, y) is the mth

harmonic component of the scattered electric field and is
‘(ml (Z, y) ,= Q$m) (x, y) – @j(’n)(x, y), wheregiven by@z

‘(m) (z, y) are the mth harmonic components@l(m) (z, y) and O=
of E(T, y, t) and Einc(z, y, t). The term A(m)(x) y) is a
coupling term dependent on the field components at the same
frequency and at other frequencies; it is given by

p=–a q=. cc

where ~,~ = 1, if i + j = m, and ~,; = O, otherwise.
fl~(z, y) is the ith harmonic component of sz{ll(z, y, t)}.
The coupling term A(m) (z, y) can be rendered explicit once
the nonlinear operator has been specified. In the section on
numerical results, the expression for A(m) (x, y) in the case
of the Kerr-like nonlinearity will be provided. The wave (4)
is the scalar analogous to the vector equation (18) in [17],
where the three-dimensional (3-D) problem was reduced to a
nonlinear system of algebraic equations to be solved in order
to obtain a numerical solution.

In this paper, we aim to reach an iterative approximate
solution to (4). Such a solution can be achieved by applying
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the so-called distorted-wave Born approximation, which is
widely used, especially to solve inverse problems [21]. In
particular, we focus on the effects of the nonlinearity on the
field components at the fundamental frequency ~0. If we apply
the distorted-wave Born approximation, we can express the
scattered electric field (for m = 1) in terms of the linear
internal field, @~(x, v), i.e., the field that would be present
in a cylinder with a homogeneous permittivity equal to the
linear part of the actual permittivity. We obtain

~~(l)(%,y) = Q’(l) (z, y)

– j(~; /4) /@:L,g) – I]@L(z’, Y’)

x H~2)(k1p)d&iy’ – j(k~/4)

x
/

AL-(’)(X’, J) H$2)(k1p)dz’dy’ (6)
.s

where 17~2)(kl p) is the Hankel function of the second kind and
the zeroth order and p is given by p = [(Z–Z’)2+(Y– Y’)2]112
[27]. In (6), the superscript in the term A‘–[1) (r;, y) indicates

that the coupling term is computed by (5) in terms of the
linear field OL (z, y).

A simpler approximate solution to (5) can be obtained by
using the classic first-order Born approximation [22]. In this
case, the scattered electric field is expressed in terms of the
internal incident electric field. This approximation yields

/
@lQ(x,y) = O’(l)(Z,Y) - j(k?/4) $(~,~) -II

x @’(l)(Z’,y)Hj2qk1@Liy’ – j(k; /4)

x
/

(7)AB-(lJ(l;’, y’)H$2) (kI~)(iZ’d~’

s

where AB ‘(l) (z, y) indicates that the coupling term is com-

puted by using (5), on the basis of the incident field only.
In order to develop an iterative process for the computation

of the electric field distributions inside and outside S, we
assume that the nonlinear field at step (k + 1) is given by

/
@&(LY) = @7wz,Y) - j(@/4) $(LY’) - 1]

x @;(l)(Z’,y’)lzp(klp)ch’dy’ – j(k; /4)

x
/

AflL(l)(z’, y’)@2)(k,p)dz’dy’ (8)
s

where A~L(’) (z, y) is computed by (6) using m;(l) (z, Y).

Moreover, from (8), it follows that Q:(l) (x, y) = ~z(~j (z, y),
if the first-order Born approximation is used, whereas

Q;(l)(X) y) = @L(x, y), if the distorted-wave Born approx-

imation is applied.
In order to evaluate the convergence of the proposed itera-

tive approach, the following residual error is defined

$?{k+l} = S-l
/

‘{
C&>y’) – O’(’) (1:’, y’) + j(k;/4)

II

_s-1 ‘x
[&l(u, 1) - l]@j(;\(7L>?))H$2)

!s

—

/

s-~ s
NL(l)(U,V)x (kl<)ddu + j(w4) ,/sfh+l

_ s-l

/ }
(9)s I& (k~odud’u dz’dy’

where ( = [(z’ – u)’ + (y’ – V)2]1t2. The approach is

assumed to be convergent if !R{k} 4 0, as k - cm. It is
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well known that, in a linear case, iterative approaches using
the Born approximation and the moment method converge if

maxj {Aj } S 1, where ~j is the jth eigenvalue of the resulting
impedance matrix. The above condition can be satisfied for
very weakly scattering objects, for which convergence can be

explicitly related to the known dielectric parameters of the
scatterers. Analogously, in the case of nonlinear scatterers, we
can expect the process to be convergent for very weak scat-
terers only, hence for very weak nonlinearities. Unfortunately,
in the present case, convergence depends on various factors:
the linear part of the dielectric permittivity, the nonlinear
coefficient, and the incident electric field. Unlike linear scat-
tering, for a monochromatic plane wave TM illumination, the
amplitnde, phase, and frequency values contribute to process where

convergence or divergence. This makes it impossible to define ~L

a criterion that establishes whether convergence can or cannot
be reached, given the values of such parameters. Nevertheless,
in the Section III, this aspect will be discussed on the basis g
of several numerical results.

Furthermore, in order to apply the distorted-wave Born

approximation, at the first iteration step the field Q:(l) (x, y) =
@(z, y) is numerically computed by the Richmond for-
mulation [25], which has been proven to be accurate for
forward-scattering by dielectric cylinders if a TM illumination
is used [28]. To apply the Richmond method, the cross section
S is partitioned into P square subdomains, p = 1, ..., P.
The field and dielectric parameters are assumed to be constant
inside each cell, and the problem solution can be obtained by
the matrix eauation.,. . .

[R]QL ==Q’ (lo)

unknown array of dimensions P x 1 whose elements
are given by ~~ = @L($P, gP), p = 1,. ,., P, where
(xP, yP) is the center of the pth subdomain,

excitation array of dimensions P x 1 whose elements
are given by ~J = @’(l) (zP, yP), p = I,. ..)P,



IEEETRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. VOL. 44,NO. 3,MARCH 1996

M -

M-

Linear case

DWBA I

k=.k$ &2= 0.2
6

-.6 -5 -.4 -2 -.r .0 .1 2 ,4 5 .$
x [m]

(e)

e

DWBA

.0I -
-!6 -3 -.4 -2 -.l ,0 .l 2 ,4 ,5 ,6

x [m]

(g)

Fig. 2 Ccmtlnued. (e) and (f) ?2 = 0.2. (g) and (h) F2 = 08

I kl= -klx
(hear) \ I

11

F
k,= -klx

. . . .
(nonlinear)

.’ ‘

/

/’ ‘,
.\ “w-- ;!

/—, ~
‘\

.7 :

to“ ~,/__/- ‘ k, = kly = -kly
\ (Im.ear)

‘, ‘ : “’3./’ S,, “ ,’ k, = kly = -kly~..,<,,_>L ,

&

Y!.J’~ ‘i . . (nonlinear)

.9 ,’
P “, ;

‘ k,=klx
a2 $ ‘ ‘ (hear)

.8 K kl=kl~

a. ‘1 x
(nonlinear)

,7< I

-.6 -.5 -,4 -,2 -.l .0 1 ,2 ,4 ,5 ,6
x [m]

Fig. 3. Scattering by a nonhnear half-shell for different dlummation
directions. Amplitude of @ti 1J(r, y). kl propagation vector (00 = 1
(V/mJ. do = 0. :] = 1.5, :2 = 0.2. klaz = 0.-l9rr, k{al = 0,6T$
P = 21, 0. = 1.05rr, DWBA),

20
..— BA

u
/’ , ‘...

k=l ‘ ‘:.

16

14

!,2

to

.8

.6

.4~
-.6 -.5 -.4 -.2 -.i !0 ~ 1 .4 .5

x [m]
f

(f)

43

4,0- {

3.5

~‘{

k=3
10

25

\20
/

------- --

15-.,
\

.5 ‘! !’,,, 1/
,0

Cz= 0.8

-.6 -3 -,4 -2 -.i ,0 1 2 .4 ,5

x rrrrl

(h)

.6

1
.6

[R] impedance matrix of dimensions P x P whose generic
elements are

x 7TA’1CLTJ1 (klb)Hp (klpp7] ifp#g

where pP,I = [(zP –x~)2+(yP–y~)2]lt2 and a,P= (SP/m)l/2,

SF being the area of the pth subdomain.
It is important to note that for linear problems, the

discretization should be chosen according to the Hag-
mann–Gandhi–Durney criterion [29], which relates the
maximum linear dimensions of each subdomain to the
minimum wavelength of the incident field. In a nonlinear
case, the minimum significant wavelength of the field is not
known, due to harmonics generation. Therefore, one has to
make some a priori assumptions in order to fix the maximum
linear dimensions of the discretization cells. In this case, the
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TABLE I
RESIDUALERRORS k!{k} FOR DIFFERENTNUMBERSOF ITERATIONS.SIMULATIONSIN FIG. 2

kJ &*= ().01 82=0,1 &.2= 0.2 Cz= o.8

DWBA BA DWBA BA DWBA BA DWBA BA
1 5.61c1OS 4,80.101 4,88.10s 5.OTIO1 7.09”103 5,37”101 8,73.10’2 7.54”101
2 2.93”103 3.04”10-1 3,93 -10”3 3.65.10-1 5,79.10-3 4.54.10-1 1.26.10-1 1.92100

3 1.81 -10-3 2.09.10-1 2.86 -10”3 2.65.10-1 4.49.10-3 3.6701O-1 1.07.10-3 7.07.100

4 1.25’10-s 1.50”10-1 2.18s103 2,12101 3.67’10s 3.39”10-1 8.89.102 4.6601O1
5 8.85’104 1.0810-1 1.76”10s 1.67.101 3.3T103 2.99”101 1.97”101 1.90”104
6 6.42.104 7.76.10-2 1.32 -10-3 1.26.101 2.70-103 2.38 -10-1 2.29.10-1 1.79.1012

12 9.19.105 1.11.10-2 3.07.10”4 2.98.10-2 1.13.10-3 1.03.10-1 3.44.10-1 -
(k. = 12)

13 < 8{k*} 8.01”103 2.45.104 2,31.102 1.05.10-3 9.49.102 t3.otj410f3° -

14 < n{k*} 5.81.10-3 1.85.10-4 1.78.10-2 8.54-104 7.61.10-2 4.89-101 -
15 < !%{k*} 4.20,10-3 1.50.10-4 1.45.10-2 7.42.10-4 6.82,10-2 4.87.103 -
16 < $l{k*} 3.04’10-3 1,15.10-4 1,09”10-2 6,75 .10-4 6.04,10-2 7.57”109
17 < ~{k*} 2.20’10-3 8.92.10s 1.09’102 5.42104 4.8T102 -

(k*= 17)
.

27 < ~{k*} 8.59 10-s < ~{k*} 2.71:10-4 1.35:10-’$ 1.22:10-2 -
(id’ = 27)

.

29 < !%{k*} < 31{k*} < 91{k*} 9.9210-5 .

(k*= 29)

36 < !R{k*} < fi{k”} < ti{k*} < fi{k”} 8.1310-5 3.3110-3 - .
(k.= 36)

:
62 < 91{k*} < ~{k”} < !R{k*} < 8?{k*} < !R{k*} 8.3810-5 -

(k*= 62)

Hagmann–Gandhi–Durney criterion for 2-D problems can be
expressed as

where 1 = afi and khr has been defined in (4), where b~ is

the estimated maximum order of the harmonic components.

Once the approximate linear field 0:(1) (x, y) = @L(z, y)

has been computed, the iterative process can be implemented

by discretizing relation (8) according to the previous scheme

P

‘L(’)(z., ~P)@2)(klpP)A.sP (12)x~Ak
p=]

where pP = [($ - XP)2 + (y – yP)2]l/2. Analogously, the
residual error is computed approximately as follows

= s-5+ j(k:/4) ‘&zq,Yq) - m:tk,)Y,)
p=l

P

q=l

P

p=l

P

q=]

(13)

Even though in this paper we place emphasis on the effects

of the nonlinearity on the fundamental field components,
in the following we explore the possibility of predicting
the generation of higher-order harmonics. This problem can
be faced by using (4) and (5), applied recursively. Let us
consider in detail the generation of the third-order harmonic
component, under the hypothesis of a monochromatic incident
field at a frequency ~o, If we apply the distorted-wave Born
approximation, we can express a solution to (4) for m = 3
as follows

qklp)dddv’0’(3) (z, y) = –j (k~/4) ~ A~-(3)(z’, ~’)llo
s

(14). .
where AL– (3, (z, y) indicates that the coupling term is com-
puted by (5) in terms of the linear field @L(x, y) (at the
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fundamental frequency). If we use the first-order Born ap-
proximation. we can replace (14) with

@(3)(x, y) = –j (k;/~) ] AB-(3)(.K’, y’)@)(k~~)d.#dy’.
s

(15)
At this point, the iterative approach can be expressed by

(16)

which can be numerically implemented by following the
same scheme as previously used for the fundamental field
component

P

JJ=l

P

p=]

The same procedure can be applied to derive analogous

expressions for all higher-frequency components.

III. NUMERICAL RESULTS

As a first example, we considered the scattering by an
infinite cylinder of circular cross section [Fig. 1). The cylinder
was illuminated by a TM plane wave given by

@’(l)(z,y) = @Oe–~klU+d~ (18)

where u = xx + gy. Ikll = kl, and 00 and do are real
constants. As mentioned in Section I, the convergence rate
depends (unlike the linear case) on @o and q$o, which are
included in the scattering process through (3). The nonlinearity
was assumed to be of the Kerr type, for which (3) can be
rewritten as

Enl($. g,t) = Zo[cl(z, y) + &21E(:r, y,t)12] (19)

As a consequence of this choice, the coefficients 0,( J-, y) in
(5) can now be rendered explicit. More precisely,
given by

Q(x,y) = C2T-1
I

E(x>y, t)2e-J’&Otdt
T

where T = 2T/Wo.

they are

(20)
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Flg 6. Scattering by a nonlinear square cylinder. Amphtude of ~i(l~(.r, ~) (’00 G 1 (V/m), do = O, ;] = 1,’2, tz = 0,08, P = 144, DWBA). kll = 3.2T,

In this firstexample. we assumed @O = 1 W/m), do = O, and @S(l)(Z, g) (= ~t(l)(z, y) – O’(l)(x, y)), respectively,
and kl = kl x. Moreover, the cross section of the cylinder obtained by using the distorted-wave Born approximation. The
was assumed to be homogeneous in its linear part (cl (z, y) = figure gives the values for k = 1 and the assumed convergence

:1 = 1.3) and with a radius a such that kla = 1.57r. The values, i.e., the values obtained at a given step k’ at which
other assumed parameters were ~2 = 0.1 (corresponding to the residual error R{ k“ } turned out to be less than a fixed
rather a significant nonlinearity) and P = 225, Fig. 1 shows threshold value, !&. In this case, we assumed !& = 10–4.
pictorial representations of the amplitudes of the total and scat- The total and scattered electric fields distributions in the linear
tered electric fields (at the fundamental frequency) @t(lJ (z, y) case (ez = O.) are also provided.
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F]g 8, Scattering by a nonlmew shell. Effects of the amplltude of the
mcicfent plane wave @o[@o = (J,:1 = 1,2. KIIL2 = U 49T:klaI = O Gr,
P = 121, DWBA)

A comparison between the approach based on the clistorted-

wave Born approximation and the version of the approach

based on the clmsic Born approximation was made, con-

sidering a homogeneous (linear) dielectric circular cylinder

TABLE 11
RESIDUALERRORSJR{k} FOR DIFFERENT

NUMBERSOF ITERATIONS,SIMULATIONSIN FIG, 4

“ I E2=0.05 I e,=o.1 \ 62=0.3

++-%%-+ :::;; 1 4.85”100

1.90.102

coated with a nonlinear layer (Fig. 2(a)). The incident electric

field was given by (18) (00 = 1 (V/m), do = O, and

kl = klx ) and the other parameters of the two-layer cylinder

were S, (nucleus) = 1.8, S1 (nonliilear layer) = 1.1, klal =

0.67r, and klaz = 0.4%, P = 121. Fig. 2 gives the

values of the amplitude of the total electric field, Ot(l J(:1;,y),

calculated along the c axis (y = 0.0) by using the two

algorithms for different values of the nonlinear parameter
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&z= 0.05 E2= 0.1 E2= 0.2

pa(x,y)l

o

0

.0

Fig. 9. Scattering by a cylinder of irregular
of 13t(1) (x, y) and 0’(1) (z, y). (b) Bistatic

Linear case
}

2.0

(a)

(b)

cross section (OO = 1 (V/m), do = O, kl = ICIX, ~IS = 1.67T; p =

scattering width (W(O) ).

106, DWBA). (a) Amplitudes

C2. The values obtained in the linear case (e 1 = O.0) and divergent, even though the solution at the first iteration may

analytically computed [30] are also given. In all cases, the be of some interest. The above considerations are confirmed

process converged quite slowly (even in the linear case), by the values of the residual error !R{k}, which are given in

due to the relatively high permittivity of the linear internal Table I. For this example, we assumed R~h = 10-4.

cylinder. However, the distorted-wave Born approximation In other simulations, a half-shell was considered (Fig. 3).

always converged more quickly. For E2 = 0.8, the process was The incident field was assumed to be given by (18), but in
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Fig. 10. Scattering by a nonlinear cylinder. Amplitude of @t(3) (z, y)
(generated third-order harmonic component). The configuration is the same
as in Fig, 1.
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Scattering by a nonlinear shell. Amplitude of @t(3) (s, y) (generated
th~d-order harmonic component). The configuration is the same as in Fig. 8.

this case the propagation direction was made to change. In

particular, Fig. 3 gives the values of the amplitude of the
total electric field @t(lJ (z, y), calculated by the distorted-
wave Born approximation along the z axis (y = O.) for
different values of kl. In particular, we assumed kl = klx,

kl = –klx, kl = kly, and kl = –kly. The other assumed
parameters were 00 = 1 (V/m), @o = O, &l = 1.5, sz = 0.2,
k1a2 = 0.497r, klal = 0.67r, P = 21, and a. = 1.057r.
The figure also gives the values obtained in the linear case
(CZ = 0.0). In order to show the effects of the nonlinear
index, Fig. 4 gives a pictorial representation of the amplitude
of the scattered electric field (at the fundamental frequency)
@s(lJ (m, y) = @t(l) (z, y) – oi(l) (x, y), computed by using

the distorted-wave Born approximation in the [z, y] plane; the
scattered field was due to the interaction of the incident field
with the same half-shell as in Fig. 3, for kl = klx and
=1 = 1.8. For S2 = 0.05 and =2 = 0.1, the figure gives

IW%Y)I

I

2.0

1.0

0.0

Fig. 12. Scattering by a cylinder of irregular cross section, Amplitude of
@t(3) (x, y) (generated third-order harmonic component). The configuration
is the same as in Fig. 9.

TABLE III
RESIDUALERRORSR{ k} FOR DIFFERENTNUMBERS

OF ITERATIONS.SIMULATIONSIN FIGS. 5–7

ICJ
I

klf = 1.6Tt I IQ=3.2n I kll = 6.4x

1 6.06”10-1 8.87.10-1 1.50”10-1

2 6.75”10-2 1.99”101 2.25.10-f

31 2.21”102 I 1.95”10’ I 5.49”101
4 6,68”10-3 1.14”10’1 3.34’100

5 1.45”10”3 7.15’102 8.79”102
6 3.45”104 3.21”102 2.41”10s
7 7.35”10-5 1.95”10-2 2.69”1019

(k*= 7)

I
18 I < !Jl{k*} 8.65”10-s .

the convergence values, whereas for E2 = 0.3, the values are

those obtained at k = 1. The linear values are also given for

a comparison, and the values of the residual error W{ k } are

given in Table II for a threshold value fixed at $&h = 10-4.
A cylinder of square section was also considered in order

to evaluate the effects of the nonlinearity for different values
of the ratio between the wavelength and the linear dimensions

of the cross section. Figs. 5–7 show the 3-D representations
of the a_wplitude of the total electric field @t(l) (z, y) in the
[x, y] plane at various iteration steps (distorted-wave Born
approximation). The assumed parameters were @O = 1 (V/m),
do = O, kl = /cIx,EI = 1.2, ez = 0.08, kll = 1.6T (Fig. 5),
kll = 3.2m (Fig. 6), kll = 6.4m (Fig. 7), and P = 144. The
total linear field @L($, y) is also plotted. Table III gives the
values of the residual error R{ k}, for a threshold value fixed
at $?th = 10–4.

The effects of the amplitude of the incident plane wave (Po

(which, in linear scattering, plays only the role of a multiplying
constant) were considered with reference to a single nonlinear
shell (Fig. 8). The shell was characterized by the following
geometrical and electrical parameters: @o = O, kl = kIx,

&l = 1.2, E2 = 0.2, k1a2 = 0.4%r, klal = 0.67r, and
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TABLE IV
RESIDUALERRORS R{ k } FORDIFFERENTNUMBERSOFITERATIONS.SIMULATIONSINFIG. 9

k=l k=2 k=3 k=4 k=5 k=6

2<21”10-2 5.31’10-3 1.39’10-3 3.5810-4 1.22-104 3.88”10S
(k*= 6)
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P = 40. The figure gives the assumed com’ergence values

(obtained at step k“, such that R{k*} < Rfh = 10–4) of the
amplitude of the total electric field Qt( 1)(x, ~) along the x
axis (y = 0); they were computed by the distorted-wave Born
approximation and normalized to 00. The values of the linear
field QL (z, ~) (analytically computed and independent of @o)

are also provided.
Finally, the scattering by a nonlinear cylinder of irregular

cross section and inhomogeneous in its linear part was consid-

ered (Fig. 9). We assumed 00 = 1 (V/mJ @o= O, kl = klx,

kls = l.tirr, and P = 106, ~~h = 10- .4 Fig. 9(a) shows
the pictorial representations of the total and scattered electric
fields at k = k*. Fig. 9(b) gives the bistatic scattering width

[31]. Table IV gives the corresponding values of the residual
error R{k}.

The prediction of the third-harmonic component generation
was considered with reference to the same configuration as

shown in Fig. 1. In particular, Fig. 10 gives a pictorial
representation of the amplitude of Qtf3J(z, y) = @’[3J(~, ~),

obtained by the iterative scheme defined by (15) and (16)

using the distorted-wave Born approximation for ez = 0.1.
In the case of a single nonlinear circular shell, i.e., the same

as used for the evaluation of the effects of the amplitude of
the incident field on the fundamental components, the iterative

approach (distorted-wave Born approximation) provided the

values of @tt3) (z, y) = @s(3~(r, y) given in Fig. 11. They
were computed along the J axis (y = 0.0), for @o = 1.25 and

for different numbers of iterations.

Finally, for the irregular scatterer used for the simulation

related to Fig. 9, Fig. 12 shows a pictorial representation of

the convergence values of the amplitude of the third-order

harmonic component 0*(3) (r, y) obtained at step k“, at which

R{k*} S 10-4 (Table VI).

IV. CONCLUSION

In this paper, an iterative approach to the approximate

computation of the fields inside and outside nonlinear cylinders

of arbitrary shapes has been described. Starting from the
results of an integral-equation formulation for the scattering by

bounded weakly nonlinear dielectrics, the approach makes use
of the distorted-wave Born approximation; in a simpler version
of the approach, the first-order Born approximation is applied.
The paper has described the scattering by several cylinders

(isotropic, lossless, and nonmagnetic) that had various cross-
section shapes and were inhomogeneous in their linear parts.

The effects of the nonlinearity, of the linear part of the

permittivity, of the amplitude of the incident field, and of
the ratio between the wavelength and the linear transversal
dimensions on the fundamental harmonic component have
been evaluated for Kerr-like nonlinearities. In particular, the
convergence of the iterative approach has been discussed.

Finally, the generation of the third-order harmonic component
has
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